Aamir Shabbir Pare

Problem Solving Programming

Design Patterns

000%\

Recap of Previous Lecture
Abstract Factory Design Pattern

Aamir Shabbir Pare

Abstract Factory Pattern Concept

GoF Definition

» Abstract Factory is a creational design pattern that
lets you produce families of related objects
without specifying their concrete classes.

PareDox

* In this pattern, you provide a way to encapsulate a
group of individual factories that have a common
theme.

* This pattern helps you to interchange specific
implementations without changing the code that
uses them, even at runtime. However, it may
result in unnecessary complexity and extra work.

* An abstract factory is called a factory of factories.

Aamir Shabbir Pare

' g§

PareDox
Education Solutions
V v
Concrete Concrete
ProductAl @ ProductB1
ProductA @ ProductB
Concrete @ Concrete
ProductA2 ProductB2
A A

return new

@)

ConcreteFactoryl

+ createProductA(): ProductA
+ createProductB(): ProductB

AV

3

«interface»
AbstractFactory

+ createProductA(): ProductA
+ createProductB(): ProductB

ConcreteProductA2()

ConcreteFactory2

®

+ createProductA(): ProductA
+ createProductB(): ProductB

Abstract Factory Pattern Structure

i

+ Client(f: AbstractFactory)
+ someQOperation()

Client

- factory: AbstractFactory

ProductA pa = factory.createProductA()

P

Aamir Shabbir Pare

Disadvantages

PareDox

* Code is complex.

* A lot of understanding is required.

* Difficult to implement.

* The most complex in creational patterns.

» Refactoring — Factory Method.

e Pattern within a pattern.

Video Lecture Link : http://203.124.40.59:5802/Videos

Aamir Shabbir Pare

http://203.124.40.59:5802/Videos

PareDox Design Patterns Lecture - 16

Education Solutions

Builder Pattern

v/ What is builder design pattern
v Implementation and Guideline
v Practical Implementation using C#

Aamir Shabbir Pare

Introduction

PareDox

» The Builder Pattern is a common software design pattern that's
used to encapsulate the construction logic for an object.

 This pattern is often used when the construction process of an
object is complex.

* It's also well suited for constructing multiple representations of
the same class.

* Let us first, go over the basics of the pattern, and then with
code examples crystallize the concepts.

Aamir Shabbir Pare

What Is Builder Design Pattern

PareDox

The Concept

* Builder is a creational design pattern that lets you construct complex
objects step by step. The pattern allows you to produce different types and
representations of an object using the same construction code.

* Gang of Four Definition say:

» Separates the construction of a complex object from its representation so that the
same construction process can create different representations.

* Solves the problem of increasing constructor parameters and constructors
of a given class by providing a step-by-step initialization of parameters.

» After step-by-step initialization, it returns the constructed object at once.

A »

Aamir Shabbir Pare

PareDox W|k|p€d|a

Education Solutions

* The builder pattern is a design pattern designed to provide a flexible
solution to various object creation problems in object-oriented
programming. The intent of the Builder design pattern is to separate
the construction of a complex object from its representation. It is one
of the Gang of Four design patterns.

https://en.wikipedia.org/wiki/Builder_pattern

Implementation Guidelines

PareDox

Choose builder pattern when:

* Need to breakup the construction of a complex object
* Need to build a complex object part-wise independently.

e Construction process must allow multiple representations of the
same class.

Aamir Shabbir Pare

PareDox

Education Solutions

The Structure

* Builder Interface
* Concrete Builder
* Product
* Director

Builder Pattern Structure

Director <<Interfaces>
Builder
+Construct() +BuildPart ()
._|_.

ConcreteBuilder

+BuildPart)
+GetResult ()

Builder Pattern

Product

ENY

Aamir Shabbir Pare

' g§

b

. no, Bullder Pattern Structure

Education Solutions

b = new ConcreteBuilderl
d = new Director(b)

The Structure d.make0 S,

Productl p = b.getResult)

l Client '
Y. . = \ @
°)
BUIIdIng MUItIpIe Q" xinterface» Director =
P d t St t Builder - -
I’O UC S FUC Ure - builder: Builder
+ reset()
+ buildStepA(Q + Director(builder)
+ buildStepB(Q + changeBuilder(builder)
+ buildStepZ() + make(type)
é builder.reset(
A 4 B ——— T e 3 if (type == "simple”) {
Concrete | Concrete builderbuildStepA(
Bl i2) : } etse {
uilderl - Builder2 builderbuildStepB(
builderbuildStepZ(
- result: Productl - result: Product2 }
-
+ reset() + reset(_
+ buildStepA() + buildStepA(Q FESURL =~ Bew Eroduict20
+ buildStepB() + buildStepB(
+ buildStepZ() + buildStepZ() result.setFeatureB(
+ getResult(): + getResult():
Productl Product2 return this.result
v v

| Productl @ Product2 @

Aamir Shabbir Pare

Participants of Builder Pattern

PareDox

Builder

This is an interface which is used to define all the steps to create a
product

Concrete Builder

This is a class which implements the Builder interface to create a complex
product.

Product

This is a class which defines the parts of the complex object which are to
be generated by the builder pattern.

Director

This is a class which is used to construct an object using the Builder
interface.

N

Aamir Shabbir Pare

S
... Problem

Education Solutions

* Imagine a complex object that
requires a laborious, step-by-step
initialization of many fields and
nested objects.

\“\\ '

\

N

——

* Monstrous constructor with lots of
parameters.

e Scattered all over the client code.
* How to build a simple house?

\-\"—‘-b

Aamir Shabbir Pare

Problem

PareDox

* How to build a simple house?

* Four walls, a floor, install a
door, fit a pair of windows,
and build a roof.

* What about bigger house with '
backyard and swimming pool? ’

* What if we need a house with
other representation like
heating system, plumbing and
networking cable installation?

Aamir Shabbir Pare

PareDox

Education Solutions

* A base class House

* Create other subclasses that
will cover all combinations of
parameters.

* This approach seems to end
up with considerable number
of subclasses.

N Solution using Inheritance

HouseWith
Garage

HouseWith
SwimmingPool

HouseWith
FancyStatues

HouseWith
Garden

You might make the program too complex by creating a subclass for every

possible configuration of an object.

ENY

Aamir Shabbir Pare

Solution using Method Parameters

PareDox
Education Solutions
* Create a giant constructor right in House
the base class.
* Provide all possible parameters in e T
dSbardage, Nasswimrool,
the constructor that control the / rasStatues, hasGarden,.) \
house object.

new House(4, 2, 4, true, null, null, null, ...) new House(4, 2, 4, true, true, true, true, ...)

* Breeding subclasses will be solved
but another problem is born.

* |In many cases most of the
parameters will be unused.

* For instance, only a fraction of
houses have swimming pools, so

the pa rameters related to The constructor with lots of parameters has its downside: not all the
Swimming pOOlS will be useless parameters are needed at all times.
nine times out often. -

A »

Aamir Shabbir Pare

... Fast Food Restaurant Business Case

« Atypical meal could be a burger and a cold drink.

« Burger could be either a Veg Burger or Chicken Burger and will be packed
by a wrapper.

 Cold drink could be either a coke or Pepsi and will be packed in a bottle.

* [tem interface represents food items such as burgers and cold drinks and
concrete classes implement the Item interface and a Packing interface
represents packaging of food items and concrete classes implement
the Packing interface as burger would be packed in wrapper and cold drink
would be packed as bottle.

* Meal class have ArrayList of Item and a MealBuilder to build different types
of Meal objects by combining Item.

* BuilderPatternDemo, demo class will use MealBuilder to build a Meal.

Fast Food Restaurant Business Case
PareDox Structure

Education Solutions

Item Meal MealBuilder
uses -items : Armraylist <item> builds
+name() : String +addltem(ltem item) : void +prepareVegMeal() :
+packing() : Packing +getCost() : float Meal
+price() : float +showiltems() : void +prepareNonVegMeal()
: Meal
implement
ks
I Packing I i
| | BuilderPattern
' t : Demo
implement I implement I +main() : void
I Burger usesl Wrapper I Bottle I T I ColdDrink I
| —— | |
L t [] | i f]
I extend I I extend I
VegBurger | ChickenBurger | Pepsi Coke

N

Aamir Shabbir Pare

